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ABSTRACT 
Consider a semigroup T on a Banach space X and a (possibly unbounded)  
operator C densely defined in X, with values in another  Banach space. We 
give some necessary as well as some sufficient conditions for C to be an 
admissible observation operator for T, i.e., any finite segment of  the output 
function y(t) ~ CTtx, t > O, should be in L p and should depend continuously 
on the initial state x. Our approach is to start from a description of  the map 
which takes initial states into output functions in terms of a functional 
equation. We also introduce an extension of C which permits a pointwise 
interpretation ofy( t )  = CTtx, even if the trajectory o f x  is not in the domain 
of C. 

1. Introduction 

Let T = (Tt),_>0 be a strongly continuous semigroup on the Banach space X, 
let Ybe another Banach space, let C: W ~ Ybe a linear operator, where Wis a 
dense T-invariant subspace of  X and let p E [ I, ~ ]. In this paper we investigate 

,the concept of  admissibility of  C as an observation operator for T and p, which 
means that the formula 

(1.1) y ( t )  = C T t x ,  for t >-_ O, 

defines a continuous map from X to Y-valued functions of class LFo~. 

Before giving the precise interpretation of (1.1), let us say some words about 

the intuitive meaning and the importance of  our problem. In linear systems 

theory, one usually deals with systems described by the equations 
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±(t) = Ax( t )  + Bu(t) ,  

y(t) = Cx(t). 

Here x(t) is the state of the system at t ime t, u(t) is the input and y(t) is the 
output.  We have x(t) E X, the Banach space X being the state space, u (t) ~ U, 
the Banach space U being the input space, y( t )~  Y, the Banach space Y being 
the output  space, and A is the generator of a strongly continuous semigroup T 
on X. The input function u(.  ) and the output function y( .  ) are assumed to be 
locally L p, for some p ~ [ 1, oo]. The control operator B and the observation 
operator C may be unbounded,  in which case the well-posedness of  such a 
system (i.e. continuous dependence, for any t > 0, of x ( t ) E X  and y ( . ) E  
L p([0, t ], Y) on x(0) E X and u ( .)  ~ L p([0, t ], U)) is not easy to establish. In the 
paper Weiss [18] we have analysed the particular case C = 0 (i.e. we have 
ignored the output). In this paper we restrict ourselves to the particular case 
B = 0 (i.e. we consider there is no input). Some of the results for B = 0 can be 
obtained from those for C = 0 by duality, but most can not (for details on that, 
see Section 6). The results which we get are needed for the treatment of  the 
general case (the well-posedness of  the triple (A, B, C)), as will be hinted in 
Sections 4 and 7 and worked out in detail in the article [21]. 

Unbounded  observation operators appear naturally, for example when one 
models boundary or point  observation for systems described by linear 
P.D.E.'s. There is an extensive literature dealing with systems having 
unbounded observation operators, for example Curtain and Pritchard [2, 
chapter 8], Fuhrmann [6, chapter III], Lasiecka and Triggiani [8], Pritchard 
and Salamon [11], Pritchard and Townley [12], Pritchard and Wirth [13], 
Salamon [ 14], [ 15], [ 16], Seidman [ 17], Yamamoto  [20]. 

The standard interpretation given to (1.1) is the following. This formula has 
a clear meaning for x E W. If  the functions y( .  ) obtained in this way are locally " 
in L ~' then for any fixed T >  0 we define the operator Lr :  W--'Lr([O, oo), Y) 
by truncating y( . )  to [0, T) 

ICTtx for t ~ [0, T), 
(1.2) (Lrx)(t) = [0, fo r t  _-> T. 

(We don' t  consider Lr  : W --- LP([0, T], Y) to avoid complications later, which 
would occur if the range space of Lr  would depend on T.) If  Lr  has a 
continuous extension to all of  X (denoted by the same symbol) then we say that 
( for the semigroup T and the index p) the observation operator C is admissible 
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(it is easy to show that this doesn't  depend on the choice of T). In this case, we 
interpret (1.1) as meaning 

y(t) = (Lrx)(t) for t E [0, T), 

which makes sense even if Ttx is never in W. (The two sides of  the above 
equality are of course defined only up to a null-set.) By choosing larger and 
larger numbers T, we get the function y ( . )  for all t => 0 (up to a null-set). This 
function we call the output function corresponding to x (see also the end of  
Section 2). 

Admissible observation operators which yield the same operators Lr  (i.e. the 
same outputs) will be called equivalent. It may happen that operators having 
domains whose intersection is zero are equivalent; see Example 1.2 below. But 
even if two equivalent observation operators have the same domain,  they do 
not have to coincide on it; see again Example 1.2. 

We show that the above interpretation of  (1.1) can be replaced by an 
(equivalent) pointwise interpretation, like for bounded C. We prove the 
following. Let A : D(A)--,X be the generator of T. Let X1 denote the space 
D(A) with the graph norm. If  C is admissible then it is equivalent to an 
operator in ~(XI,  Y). Therefore we may regard admissible observation opera- 
tors as elements ofa°(Xl, Y). Therefore we may regard admissible observation 
operators as elements of  a°(X~, Y) (they form a subspace of ~(X~, Y)). Every 
admissible C ~-~(X~, Y) has an extension to an operator CL defined on a 
Banach space D(CL) (continuously embedded in X) which has the following 
property: for any x ~ X w e  have that for almost every t >= 0, Ttx ~D(CL) and 
y(t) = CLT, X, where y( . )  is the output  function corresponding to x. Thus, 
replacing in (1.1) C by CL, the formula makes sense for any x E X and a.e. 
t >= 0, which is the best we can hope for, since functions in/4'o~ are defined only 
up to a null-set. 

We outline the contents of  the following sections. In §2 we introduce the 
concept of  an abstract linear observation system, which is motivated as 

follows. Suppose C is admissible for T. Then L = (Lt)t>_0 (as defined by (1.2) 
and continuous extension) is a family of bounded linear operators from X to 
LP([0, ~ ) ,  Y). The semigroup T and the family L satisfy a natural functional 
equation, see equation (2.1) below, which we call the composition property. We 
define an abstract linear observation system as a pair (L, T), where T is a 

strongly continuous semigroup and L is a family of operators such that the 
composit ion property holds. This is a simple and natural concept, in whose 
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definition no mention of unbounded operators or of dense T-invariant sub- 
spaces is needed. 

In §3 we prove a representation theorem which states that any abstract linear 
observation system is described by (1.1) (with the standard interpretation), 
with C ~.~'(XI, Y). That implies that any admissible observation operator is 
equivalent to an element of ~(X1, Y). 

In §4 we define the operator CL, which we call the Lebesgue extension o f  C, 
and show that CL enables us to replace the standard interpretation of (1. l) by 
the pointwise one. We also indicate other applications of CL. 

In §5 we show that CL remains unchanged if the generator of the semigroup 
is perturbed by a bounded operator. 

In §6 we introduce the Banach space of admissible observation operators C 
for given X, Y, T and p, denoted r£p. We also discuss the analogy between the 
theory of admissible control operators and that of admissible observation 
operators. 

In §7 we deal with the particular case of diagonal semigroups on l 2 with 
scalar output. We mention a Cadeson measure criterion for admissibility and 
give a method for computing CL x. 

Now we give two simple examples to illustrate the theory. We will return to 
them in the following sections. 

EXAMPLE 1.1. Consider the observed heat equation on [0, ~t] 

O 02 
~( ( ,  t )=~-~  ~( ( ,  t), 

~(0, t) = ~z(yt, t) = O, 

o )  = 

.y(t) = ~z( ~, t), 

where ~ ( 0 ,  it) is fixed and ¥0EL2[0, 7t]. 
Le t  X = L2[0, 7t]. Le t  us  denote A = d2 /d(  2, with domain 

D O )  = {x E X Ix ,  x ' ~  AC[0, 7t], x " E  L2[0, 7t], x(0) = x(lt) = 0} 

(the letters AC stand for absolutely continuous). Then A generates an analytic 
and compact semigroup T on X. Taking C = 6~ (the point-evaluation operator 
in the point ~), with domain I4" - C[0, 7t], our system is described by (1.1). C 
is admissible for p < 4; see Curtain and Pritchard [2, p. 216]. 



Vol. 65, 1989 OBSERVATION OPERATORS 21 

EXAMPLE 1.2. Let r E [ l ,  ~) .  Let X be the closed subspace of  Lr[0, 27t] 

defined by 
X = {x~Zr[O, 27t] ~o2"X( ~)d~ = O} . 

Let T be the semigroup of periodic left shifts on X, i.e. 

( T t z ) ( ~ ) = z ( ~ + t - k . 2 n ) ,  f o r k . 2 n < ~ + t < ( k + l ) . 2 n .  

By a step function on [0, 27t] we mean a function constant on each of  a finite set 
of  nonoveflapping intervals covering [0, 2n]. Let W~ be the vector space of  

step functions contained in X, let W2 = W~ and let W3 be the vector space of  
trigonometric polynomials contained in X. Let for i E { 1, 2, 3 }, C~ : ~ ---- C be 

defined by 

C~ x = x ( 0 )  

(i.e. the value of x on the first interval of  constancy), 

C2x = x(2n) 

(i.e. the value of x on the last interval of  constancy) and 

C3x -- x(O). 

Then for p < r, CI, C2 and C3 are admissible and equivalent, despite the 
facts that C~ and C2 do not coincide on their (common) domain and 

W 1 0  W 3 = {0}.  

2. Abstract linear observation systems 

We begin by giving the formal definition of  an abstract linear observation 
system, as announced in § 1. For that we need the notion of  concatenation on 
F = LP([0, oo), Y), where Y is a Banach space. 

Let y, v ~ F  and let r > 0. Then the T-concatenation ofy and v, y 0 vEF, is 
f 

given by 

y (t) = [v(t - z) for t > z. 

Recall that we work with F because we want to define our system as 

transmitting Y-valued locally p-integrable output functions and any segment 

of  such an output function can be thought of as the restriction to a bounded 
interval of  an element of F. 
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DEFINITION 2.1. Let X and Y be Banach spaces, p C [ l ,  oo] and F =  

L~([0, oo), Y). 

An abstract linear observation system on X and F is a pair (L, T), where 

T = (T,), z 0 is a strongly continuous semigroup on X and L = (Lt)t ~ 0 is a family 
of  bounded operators from X to F such that 

(2.1) L~+tX = L~x 0 LtT~x 
t 

for any x G X and any 3, t > 0, and L0 = 0. 
The functional equation (2.1) is called the composition property. The 

operators Lt are called output maps. 

The above definition is motivated as follows. Let X, T, W, Y, C and p be as 

in the introduction and let C be admissible, as defined there. Then C and T 

define, via (1.2) and continuous extension, a family of  operators L such that 

(L, T) is an abstract linear observation system. 

REMARK 2.2. Taking in (2.1) t ----- 0, we get that for any z > 0 

(2.2) L~ -- P~L~, 

where P, is the projection of F defined by truncation to [0, z) 

P,y = y (> O. 

From (2.1) and (2.2) we immediately get that for T > T 

(2.3) L~ = P~Lr. 

In particular, II L, II is nondecreasing with t. 

We give an estimate for the growth rate of II L, II • 

PROPOSITION 2.3. Let X and F be as in Definition 2.1 and let (L, T) be an 

abstract linear observation system on X and F. 
I f  M > 1 and 09 > 0 are such that 

(2.4) II Tt II < Meo,t, 

then there is some L > 0 such that 

(2.5) II L, II <=Le°', 

PROOF. 

Vt  >=0, 

Vt>=0. 

It is easy to show by induction that for any n ~ N 
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II L . x  II = (  II L , x  II p + II L,TIX II p + . . .  + II L iTn_ ,x  lip) l/p 

--< II t , x  II + II LiT, x II + " "  + II L I T , _ , x  II 

( for p = oo the argument has to be written in a slightly different form), whence 

by (2.4) 

IlL, U =<[1 + M e ' °  + . . .  +Me'P("-')] • IIL~ 11 

e`o" - 1 
< M -  {} E l {{. 

e`o-- 1 

Denoting 

we get for t ~ [ n  - 1, n) 

{I L II 

i.e. estimate (2.5). 

e ` o  

L = M  - -  II L, II 
e`o - 1 

II L. {I < Le`o(" - ') < Le`ot, 

[] 

REMARK 2.4. For to = 0, L does not have to be uniformly bounded but one 

can easily obtain that 

IILll  < L ' ( l + t )  '`p, V t > O ,  

for some L > 0. For to < 0, L is uniformly bounded. 

Let f" = L ~  ([0, ~) ,  Y). Concatenation and the projections P, have obvious 

extensions to f'. f" is a Fr6chet space with the family of seminorms p , ( y )  = 

II e . y  II, n EN.  We have F c r" densely, with continuous embedding. It is easy 
to check that for any x ~ X ,  L , x  is convergent in f', as z---oo (if T is 
exponentially stable then this is true even in F). Let 

L®x = lim L,x.  
T~O0 

Then L~ ~ ( X ,  f') and (2.3) extends to 

(2.6) L~ = P~L~, 

valid for any z >_- 0. For any x E X, Lop x is called the  output  f unc t ion  corre- 

spond ing  to x .  The functional equation (2.1) together with (2.6) imply that 

(2.7) L®x = L ~ x  0 L~T,x,  
T 

for any x E X and any z > 0. 
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3. The representation theorem 

DEV]NITION 3.1. Let X be a Banach space and T a strongly continuous 
semigroup on X with generator A : D(A) ~ X.  Let fl Ep(A ), the resolvent set of 
A ( i f X i s  real, take f l~R) .  We define the space X~ to be D(A) with the norm 

II x II, = II - A ) x  II, 

and the space X_ ~ to be the completion of X with respect to the norm 

]] x I[ -1 = [] (ill - A) - ix ][. 

REMARK 3.2. It is easy to verify that for any different fl~ ~p(A)  instead offl 
we get equivalent norms [[ • II, and [[ • [[ _, (so X_ l does not depend on fl). 
Further [I " [[1 is equivalent with the graph norm on D(A) ,  so X~ is complete. 

The spaces X,, X_~ appear for example in Nagel et al. [9, p. 19], Salamon 
[14] and Weiss [ 18], where their properties are discussed. 

The next theorem is a reformulation and slight generalization of a part of a 
theorem ofD.  Salamon (see Remark 3.6 below). We give here a (new) proof  for 
the sake of  completeness. 

THEOREM 3.3. Let X and Y be Banach spaces, p E [ 1 ,  oo] and F - -  
Lv([0, oo), Y). Let (L, T) be an abstract linear observation system on X and F. 

Then there is a unique C ~.Sf(X~, Y) such that for any x EX~ and any t > 0 

(3.1) (L® x)(t) = CT, x.  

The above result can be called a representation theorem, because formula 
(3.1) completely determines L®, since Xt is dense in X. The family L is 
determined by L~ through (2.6). C is called the observation operator o f  the 

system (L, T). 

PROOF. Let L >= 0 and to > 0 be such that (2.5) holds. Let for any s E C  
with Re s > to the operator As : X-~ Y be defined by the Laplace-integral 

Asx = f 0  ® e-St(Loo x)(t)dt. 

We have to check that this definition is correct, i.e. the above integral 
converges absolutely. We have, using (2.5) and (2.6) and denoting 2 ffi Re s, 
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fo O f n II e- ' t (L~ x)(t) II dt = ~ e-Zt II (L .  x)(t) II dt 
n - I  - -1  

=<e a ~ e -  ~"[[L.xl[  
n ~ l  

< L #  ~ e -(a-'°'n II x II. 
n~l 

(We have used above that on [n - 1, n], the L~-norm is smaller or equal the 
LP- norm.) Thus we have got that for Re s > to, As is well defined and moreover 

As E ~ ( X ,  r) .  
The functional equation (2.7) implies that for any x ~ X and any z > 0 

A,x  = e- ' t (L~x)( t )dt  + e-S'(L~T~x)(t - z)dt 

L 
~ 

= e-S'(L~ x)(t)dt + e-~AsT,  x. 

Rearranging we have 

1 ( '~ l - e - * *  T , x - x  
(3.2) - e-~t(Loox)(t)dt = - -  A , x  - e-S'As - -  

T Jo "¢ '~ 

For x ED(A ) the right-hand side of  (3.2) converges as z ~ 0, so the left-hand 
side has to converge too. Moreover, the limit doesn't  depend on s, because of  
the simple fact that 

(3.3) tim [ - l~o  Lz L Te-s'(L°~x)(t)dt - -~  L ' (L°~x)( t )d t l=O" 

Let us denote for x ~ D ( A )  

(3.4) Cx = l i m  -1 (L~x)(t)dt.  
r~0  ~" 

Then (3.2) and (3.3) imply that for x ~D(A) 

(3.5) Cx = s & x  - A, Ax,  

and since A ~.~(X~, X), we get that 

C ~E £a(Xl, Y). 

Denoting z = (sI -A)x ,  (3.5) can be written in the form 
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(3.6) Asz = C(sI - A ) - ' z ,  

which holds for any z ~ X ,  because sI - A  maps D(A) onto X. 
Let o~ be the space of those strongly measurable functions y : [0, ~ ) ~  Y 

whose Laplace-integral is absolutely convergent for Re s > co (we identify 
functions which are equal a.e.). We have seen at the beginning of the proof  that 
L ~ z E ~  for any z ~ X .  On the other hand, for x~D(A) ,  the function 
qx : [0, ~ ) ~  Y defined by fix(t) = CTtx belongs to ~ .  This follows from the 
fact that T is a strongly continuous semigroup on X1, satisfying the same 
inequality (2.4) as on X, and C E ~(XI,  Y). Since the Laplace transformation 
is one-to-one on ~ ,  it follows from (3.6) that L~x  = ~/x, i.e. (3.1). The 
uniqueness of C is obvious. [] 

REMARK 3.4. It follows from (3.1) that for x E D (A), L~ x is continuous on 
[0, oo) and the operator C has the following expression in terms of L~: 

(3.7) Cx = (L~ x)(0). 

In fact, for x E D ( A )  the function L ~x  is more than just continuous. To 
elaborate on that, we recall that a function y :  [0, oo)--- Y is said to be of class 
I,V~P if there is a function 7 ~ L ~ ( [ 0 ,  oo), Y) such that for any t > 0 

fo' y(t) = y(O) + 7(a)da. 

In particular, y is absolutely continuous. 

PROI'OSIrlON 3.5. In the conditions of  Theorem 3.3, for any x E D(A ), the 
function L~ x is of  class Wl~ p. 

PROOF. Let xED(A2). By (3.1) we have 

(L~Ax)(t) = CT, Ax, 

and after integrating both sides 

fo' (3.8) CT, x = Cx + (L~Ax)(a)da. 

Both sides of  (3.8) depend continuously on x as an element of  X1, and since 
D(A 2) is dense in Xt, (3.8) remains valid for x ~ D (A). By (3.1) and the fact that 
L~oAxEL~([O, oo), Y) we get that L®x is of  class I,V~. [] 

REMAI~K 3.6. Theorem 3.3 is contained in a repr.esentation theorem of 
Salamon [15], which concerns systems having input, state and output. 
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Actually, he considers only the case when X and Y are Hilbert spaces and 
p = 2, but the part of his proof which concerns the operator C can be easily 
rewritten for our more general X, Y and p. His proof doesn't make use of 
Laplace transforms; he first proves what appears above as Proposition 3.5 and 

then defines C through (3.7). 

REMARK 3.7. The observation operator C which appears in Theorem 3.3 
is obviously admissible for T and p, as defined in the introduction. With the 
commentary following Definition 2.1 we conclude that any admissible obser- 
vation operator for T and p is equivalent (as defined in the introduction) to an 

operator in ~(X~, Y). 

4. The Lebesgue extension 

DEFINITION 4.1. Let X, Y be Banach spaces, T a semigroup on X and 

C E&a(Xt, Y). We define the operator CL : D(Ct)--" Y, the Lebesgue extension 
of C (with respect to T), by 

(4.1) Ctx = l im -1 T~x 
r--O T 

where 

da, 

D(Ct) = {x ~ X [ the limit in (4.1) exists}. 

We define on D(CL) the norm 

II x IIo(cL)= II x II ÷ sup C T xda . 
r~(0,tl 

The name "Lebesgue extension" will be justified in Theorem 4.5 below. 

REMARK 4.2. If A, the generator ofT, is invertible then 

T, - I 
(4.2) CLX = lim C - -  A-~x. 

z~O T 

PROPOSITION 4.3. 
space, we have 

With the notation of Definition 4.1, D(Ct) is a Banach 

X~ c D(CL) c X 

with continuous embeddings, and Ct ~La(D(Ct), Y). 

PROOF. It follows easily from the fact that T is a strongly continuous 
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semigroup on X~, that X~ C D(CL), with continuous embedding. The fact that 

D(CL) C X, with continuous embedding, is trivial. 

Let the operator M:  D(CL)--" C([O, 1], Y) he defined by 

t f0 C Toxdo, for z ~(0,  11, 
( M x ) ( O  = 

I.CLx, for ~ ---- O. 

Let us check that the definition of M is correct. For any x E X the function 

L 
T 

m(z) = T, x do 

belongs to C([O, 1], X~), so C(tl~)m(T), as a function of ~, is continuous on 

(0, 1]. For x ~D(CL) we also have continuity in O, by the definition of CL. 
Therefore M is well defined. 

It is not difficult to check that, as an operator densely defined in X, M is 

closed. Since the norm on D(CL) is in fact the graph norm with respect to M, it 
follows that D(CL) is a Banach space and that M is a bounded linear operator 
from D(CL) to C([O, 1], Y). From CLX--(Mx)(O) we get that CLE 
.~(D(Ct), Y). [] 

REMARK 4.4. The space D(CL) with the graph norm of  Q ,  i.e. III x III = 

II x II + II II, is usually not complete, because CL is usually not closed as 
an operator densely defined in X. In fact, if  CL is not bounded on X and if Y is 
finite dimensional, then CL can not be closable. 

Let y E L ~  ([0, ~) ,  Y) and let t > 0. We say that y has a Lebesguepoint in t if 
the limit 

1 f t  t+T )~(t) = lim - y(a)da 
t~O T 

exists. It is well known that almost every t >_- 0 is a Lebesgue point o f y  and we 

have ~(t) = y(t) for a.e. t >_- 0 (see Diestel and Uhl [3, p. 49]). 

TrIEOREM 4.5. Let X and Y be Banach spaces, pE[1 ,  oo] and F =  

LP([0, oo), Y). Let (L, T) be an abstract linear observation system on X and F. 
Let C be the observation operator of the above system and let CL be its Lebesgue 
extension. 

Let x EX.  For any t > O, we have that Ttx ED(CL) if  and only ifLoo x has a 
Lebesgue point in t. In particular, 
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Further, we have 

(4.3) 

T,x  E D(Cz) for a.e. t > O. 

(L~ x)(t) = CLTtx for a.e. t > O. 

Taking in the first part of  the above theorem t = 0, we get that x ED(CL) if  
and only if L~ x has a Lebesgue point in 0. 

PROOF. We have for any x E X, any t > 0 and any z > 0 

(4.4) 1 f t + ' ( L ~ x ) ( a ) d a  C l fo 'T~(Ttx)da .  
T J t  T 

Indeed, (4.4) holds for x E X t  by (3.1) and the fact that CE.~(X t ,  Y). Both 
sides of (4.4) depend continuously on x as an element of X, so by the density of 
Xi in X w e  get (4.4). 

Taking in (4.4) z----0, we get that T t x ~ D ( C L )  if and only if L®x has a 
Lebesgue point in t. By the result on Lebesgue points ment ioned before the 
statement of the theorem, we get that for almost every t > O, Ttx ~D(CL) and 
(4.3) holds. [] 

REMARK 4.6. Taking in (4.4) t = 0 and comparing with (4.1), we get that 
for C as in Theorem 4.5 and x ED(CL) 

CLx = lim -1 fo '  (L~x)(a)da. 
~--0 T 

I f x  is not in D(CL), then the limit above is not convergent. 

PROPOSITION 4.7. With the notation o f  Theorem 4.5, we have for 

x e D ( C L )  

CLx = lira C2(M - A ) - l x ,  
2~¢x) 

where A is the generator ofT.  

PROOF. By Remark 4.6, for any z > 0 

f " (L~x)(a)de = + eS(z)), T(CLX 
0 

where d(z) -- 0 as z -- 0. Applying the Laplace transformation and using (3.6) 
we get for 2 ~ R sufficiently big 
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1 C ( A I _ A ) _ I x  _~ 1 pjo B -2 -~ CLX + e-X'z~(z)dz, 

whence 

fo IICLx-CA(~t-A)-'xll <F e-a~v l[ O(z) II dz. 

It is easy to show that the right-hand side above tends to 0 as ;t ~ ~ .  [] 

I do not know if it is possible that the limit in the above proposition 
converges for an x E X  which is not in D(CI.). 

REMARK 4.8. In Proposition 4.7, instead of  real 2 one may take complex A 
in an angular sector defined by l arg A I --< ~, where gt < 7t/2. 

REMARK 4.9. Let us say a few words about the importance of the Lebesgue 
extension for linear systems having input, state and output.  A detailed 
treatment of this subject will appear in the article [22]. 

Let X, Y, T, p ,  C a n d  Cz be as in Theorem 4.5. Let Ube a Banach space and 
let B E ~ ( U ,  X_ 1) be an admissible control operator for T and p (see Weiss 
[ 18]). Assume that for some (and hence all) s ~_p(A), the range of (sI - A) - IB 
is contained in D(Ct.). Then 

H(s) = C z ( s I - A ) - I B  

is an analytic .W( U, Y)- valued function on p (A). H(s) is the transfer function of 
the triple (A, B, C) in the following sense: For any U-valued step function of 
compact  support u, the mild solution of±i f )  = Ax(t) + Bu(t) is a.e. in D(CL), 
y(t) = C,x(t) is in L~([0 ,  oo), Y), it has a Laplace transform ~ and :9(s) = 
H(s)a(s). The triple (A, B, C) is well posed if the above map from step 
functions to L ~  has a continuous extension to a map from L ~  to L~ .  In that 
case, even for u E/-.go~ ([0, oo), U), the mild solution of± i f )  = Ax(t) + Bu(t) is 
a.e. in D(Cz) and CLx(.) is in L ~  ([0, ~) ,  Y). (See also Remark 7.3 below.) 

REMARK 4.10. As already ment ioned in the introduction, Theorem 4.5 
enables us to give a pointwise interpretation to (1.1), after replacing C by Cz. 
We ment ion that the equation 2(t)  = Ax(t), which describes the evolution of 
the state, also admits a pointwise interpretation. Indeed, x( t )= Tzx(0) is a 
strong solution of  that equation, if we consider it as an equation in X_ 1, 
the space introduced in Definition 3.1. This is well known (see Nagel et al. 
[9, p. 19] or Salamon [14] or Weiss [18]). 

EXAMPLE 1.1 (continued). Recall that our observation operator is given by 
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C x  = 

where ~E(0,  n). C will now be regarded as an operator from D(A)  to X. Let 
x EL2[0, ~] be such that the left and right limits o f x  in ~ exist: 

x (~  + ) =  lim x ( ~ + z ) ,  
~ 0 , ¢ > 0  

x ( ~ - ) =  lim x ( ~ - z ) .  
z ~ 0 ,  T > 0  

We don't assume these limits to be equal, i.e., x may have a jump in ¢. We want 

to show that x ED(CL)  and 

(4.5) CLx = ½[x(~ +) + x(~-)] .  

We only give the idea of  the proof. Since T is analytic, the expression CTt x 

makes sense for any t > 0. We want to show that C T t x  has a limit for t ~ 0. 

The semigroup T can be written as 

(Ttx)(( )  = G,( (,  O)x(O)dO, 

where the "Green function" Gt is given by 

1 
Gt(( ,  0) = ~ E [e -~¢-°-2k")2/4t - e -~¢+°-2~)'/4t] 

(4nt) t/2 kEN 

(see e.g.H. Dym and H. P. McKean [5, p. 67]). For t very small, all terms in the 
series giving G, become negligible, except the term 

1 
GO( ( ,  O) = - -  e -~¢-°v/' ,  

(4z~t) 1/2 

which has a peak at ~ = 0. Because of  the special form of  C, we are only 
interested in the point ~ = ~. The integral S'~ G°(~,  O)x(O)dO can be decom- 
posed into an integral on a small neighborhood of ~ and an integral on the rest, 

the latter becoming negligible as t ~ 0. The integral on the small neighborhood 

tends to the mean value of the left and right limit o f x  in ~. By the definition of  

CL we get that x E D ( C L )  and (4.5) holds. 

EXAMPLE 1.2 (continued). For the semigroup T of this example, the domain 

of  the generator A consists of  the absolutely continuous functions x E X for 

which also x ' ~ X .  The observation operators C~, C2 and C3 are equivalent to 
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C : D ( A ) - - - C  defined by Cx = x(0). A moment  of thought will convince you 
that x ~ D (CL) if and only if x has a Lebesgue point in 0, and then 

l f ;  CLx = lim - x( ~)d(. 
e--0 

Notice that D(CL) is not T-invariant. 

5. Invariance to perturbations 

In the sequel we want to show that the Lebesgue extension of C is invariant 

to bounded perturbations of the semigroup. 

LEMMA 5.1. Let T be a semigroup on X,  with generator A,  let P E . ~ ( X )  

and let S be the semigroup generated by A + P. 

Then for any x E X 

(5.1) l im -1 ( S , x  - T , x )  = Px. 
r ~ 0  T 

PROOF. 

(5.2) 

We decompose 

We denote 

We have for z > 0 

1 (S,x - T ,x)  = 1 ~0' T,_~PS,  x de. 1 

T T 

T ,_oPS ,  x - Px = T,_oP(Sox - x)  + (T,_o - I)Px.  

M = max II T i P  li- 
fE[0,11 

Let x ~ X be fixed. Let e > O. Let ~, E (0, 1 ] be such that for t E [0, ~],  

e 
II S , x  - x II and II TtPx - -  P X  II - 

2 M  2 

Then for r E ( 0 ,  ~,] and a ~ [ 0 ,  t]  

whence 
II T ,_oPSoX - Px II < e, 

1 f ,  - T ,_~PS~x de - Px N e. 
T ,~O 
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By (5.2) we get that (5.1) holds. [] 

TrIEOREM 5.2. Let X and Y be Banach spaces, let T be a semigroup on X,  

with generator A,  let P E ~ ( X ) ,  let S be the semigroup generated by A + P and 

let C E.~'(X,, Y). 

Then the Lebesgue extension o f  C with respect to S is the same as with respect 

to T. 

PROOF. Let Cc be the Lebesgue extension of C with respect to T and let C£ 
be the Lebesgue extension with respect to S. Let x ~X.  Let us denote 
z( t )  = S t x -  Ttx. Then 

(5.3) Q x = l i m  C 1  "T~x de + C 1 z(tr) , 
~ 0 1 .  ~dO ~" 

if the above limit exists (i.e., if x ED(C~)). 
Subtracting the equalities 

(A + P) Sax da -- Sex - x, 

A 5o ~ Tax de --- T~x - X, 

and dividing by T > O, we get that 

lfo, 1 F ~ A -  z(tr)de = -  (S,x - T , x ) -  P 1 Sax da. 
? ? TJO 

The above formula, together with Lemma 5.1, yields 

'50" lim A - z ( e )de  = Px - Px = O. 
T--O T 

On the other hand, it is clear that 

lim -1 50 ~ z(tr)dtr = O. 
'r--O T 

The last two equalities, together with the definition of the norm on XI, imply 
that 

lira z(e)da = O. 
T--0 I 
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Because of  the continuity of  C on X~, the second term on the right-hand side of  
(5.3) tends to 0. Therefore, the limit in (5.3) exists if and only if the limit in 
(4. l) giving CL exists, and then the two limits are equal. 

REMARK 5.3. In the conditions of  Definition 4.1, 
x E D ( Q ) .  Then 

m ~ T T  I e 
(5.4) CLx = lira C (.4 - sI) - ~x. 

~ 0  T 

[] 

let s~p(A)  and 

If  x is not in D ( Q )  then the limit in (5.4) is not convergent. This follows 
immediately from (4.2) and Theorem 5.2, with P = - sI. In fact, (5.4) can be 
obtained also by a direct computation,  without using Theorem 5.2. 

REMARK 5.4. In the conditions of Theorem 5.2, if C is an admissible 
observation operator for T and some p,  then it is admissible also for S and p. 
This will be proved in another paper. 

6. Spaces of admissible C and duality 

First we slightly reformulate the definition of admissibility given in the 
introduction. The change is that, in view of Remark 3.7, we restrict our 
attention to operators in .~ce(X~, y). That restriction enables us to consider 
spaces of admissible observation operators. 

DEFINITION 6.1. Let X a n d  Ybe Banach spaces, let T be a semigroup on X 
with generator A, let C E.?'(Xt, Y) and let p E [ 1, oo ]. Then C is an admissible 
observation operator for X, Y, T and p, if for some (and hence any) T > 0 
there is some K >_- 0 such that 

(6.1) II CTtx I[L'([0,rl.r) --< K II x I[, Y x  ~DCA). 

The space :go(X, Y, T) is the vector space of  all admissible observation 
operators C for X, Y, T and p,  with the norm Ill c IIIo given by the smallest 
possible K >_- 0 for which (6.1) holds. 

When Y is just Jr', the field of the scalars (R or C), we denote &(X, T) = 
:go(X, ~ ,  T). We usually write :go and &, without the arguments, when there 
is no danger of confusion. 

REMARK 6.2. It is not difficult to verify, using the representation theorem 
3.3, that :go is complete. Indeed, a Cauchy sequence in :go determines a 
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convergent sequence of families of output maps, and the limit family admits a 
representation by an observation operator. 

REMAgK 6.3. Let CL be the Lebesgue extension of C. Then C is admissible 
for T and p if and only if for any x E X and a .e. t > O, T t x E D (Cz) and CL Tt X, 
as a function of t, is in L ~ .  This follows from Theorem 4.5 in one direction 
and from the closed graph theorem in the other. 

REMARK 6.4. The following inclusions are immediate 

_-~(X, Y) c (~p c _-~(X,, Y), 

X * c  cp c X*, 

~p, c ~p~ for Pt > P2, 

all with continuous embedding. It is further clear that a necessary condition 
for C E ~gp is 

(6.2) vC c c p ,  V v E Y *  

(this condition is not sufficient; see Remark 6.11 below). 
There is one case when the determination of @p is very easy, namely when 

p = oo.  

PROPOSmON 6.5. Let X, Y and T be as in Definition 6.1. Then 

(~oo = . ~ ( X ,  Y). 

PROOF. Let C E  ~ ,  i.e., (6.1) holds with p = oo. For xED(A) ,  CTtx is 
continuous in t, so 

1[ Cx [1 _-< max l[ CTtx [1. 
t6[0,T] 

Together with (6.1) this gives that C ~.~°(X, Y). [] 

There is much analogy between the theory of admissible control operators, 
as presented in Weiss [ 18], and the theory of admissible observation operators, 
as presented here. This article has been written in such a way as to make this 
analogy conspicuous. However, there are also important differences. The 
notion of Lebesgue extension has, to my knowledge, no counterpart for control 
operators. On the other hand, the results concerning control operators for 
invertible semigroups, which appear in Weiss [ 18, §4], have no counterpart for 
observation operators. The representation theorem for abstract linear control 
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systems (see Weiss [ 18, §3]) is proved only for p < oo, while its counterpart, 
Theorem 3.3 here, is proved for anyp.  The counterpart of Proposition 6.5 here 
(see Weiss I18, §4]) holds only for reflexive X. 

The duality between admissible control operators and admissible obser- 
vation operators has been discussed in Curtain and Pritchard [2], Dolecki and 
Russell [4], Pritchard and Wirth [13], Salamon [16] and others. In the sequel 
we want to contribute to that subject by giving a precise formulation of the 
duality relationships between the spaces of admissible observation operators 
and the spaces of admissible control operators associated to a semigroup. First 
we recall a definition from Weiss [ 18, §4]. 

DEFINITION 6.6. Let U and X be Banach spaces, let T be a semigroup on 
X, let B~.~q'(U,X_~) and let p C [ l ,  oo]. Then B is an admissible control 
operator for U, X, T and p, if for some (and hence any) T > 0 and for any 

r ] ,  U) 

fo (6.3) T, Bv(t)dt ~_X. 

The space ~p(U, X, T) is the vector space of all admissible control operators 
B for U, X, T and p, with the norm Ill B HIp given by the norm of the operator on 
the left-hand side of (6.3) (which is bounded by the closed graph theorem). 

In the sequel we consider that a number T > 0 is fixed and is used in both 
Definitions 6.1 and 6.6 to define the norms on ~p and on ~p. 

For more information about admissible control operators we refer to Weiss 
[ 18] and the references given there. Here we shall need the following remark. 

REMARK 6.7. For p < ~ we have the following characterization of 
admissible control operators: B ~.~(U,  X-l) is admissible if and only if for 
any step function v : [0, T] -~ U 

S0" I TtBv(t)dt < K.  II v IIL'¢tO, ,V)" 

The norm [[[ B ][[p is given by the smallest possible K > 0 for which the above 
inequality holds. 

Indeed, if v is a step function then for any B E ~ ( U ,  X_ t) the integral on the 
left-hand side of (6.3) is in X, and if the above inequality holds then, by the 
density of step functions in L p for p < oo, this integral defines a bounded linear 
operator from L p to X. 
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With the notation of Definition 6.1, T* is a (not necessarily strongly 
continuous) semigroup on any of the spaces X*, X* and X* 2. If T* is strongly 
continuous, then it is easy to check that 

X/' = (X*)_ ,, X*_, = (X*),. 

The semigroup T* is strongly continuous if and only ifX_*~ is dense in X*, and 
this happens if and only if X* is dense in Xf'. This follows from a theorem in 
Pazy [10, p. 39]. A sufficient condition for T* to be strongly continuous is that 
Xis  reflexive (see e.g. Pazy [10, p. 411). 

In the proof of the duality theorem (Theorem 6.9 below) we shall need the 
following lemma. 

LEMMA 6.8. Let Z be a Banach space, let p, q ~ [ 1, oo] with 1/p + 1/q =- 1 
and let T >  O. Let S be the unit ball o f  LP([0, TI, Z). Then for any y ~  
Lq[0, TI, Z*) 

o r y(t))dt (6.4) I[ Y II = sup (v(t), . 
tES 

Let S' be the unit ball o f  Lq([O, T], Z*). Then for any vEL"([O, T], Z)  

Jfo p (6.5) II v II = sup (v(t), y(t))dt . 
t~S' 

It has to be pointed out that generally Lq([0, T], Z*) is not the dual of 
LP([0, T], Z), unless p < ~ and Z has the Radon-Nikodym property; see 
Diestel and Uhl [3, p. 98]. The proof of(6.4) can be found in [3, p. 97], where 
the unnecessary assumption p < oo is made. The equality (6.5) follows from 
(6.4) and the fact that y can be regarded as an element ofLP([0, T], Z**), with 
the same norm. 

TI-IEOREM 6.9. Let U, X, Y be Banach spaces, let T be a strongly con- 
tinuous semigroup on X such that T* is also strongly continuous and let 
p, q~[1 ,  oo] with 1/p + 1/q = 1. Then we have the following duality relations: 

(i) For any C ~.~(X~, Y), 

C ~  ~gp(X, Y, T) ,=, C*E~q(Y* ,  X*, T*), 

III c Ill. -- Ill c *  Illq. 

(ii) For any B E~g(U, X_~), i f  p < ~ or i f  X is reflexive, 

B ~ ~p(U,  X, T) ~ B* ~ ~q(X*, U*, T*), 
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Ill B Ill, = Ill B* Illq. 

(iii) For any B E ~ ( U ,  X-l), 

B ~ ( U ,  X, T) =, B * ~  ~I(X*, U*, T*), 

Ill B Ill~ = Ill B* Ill,. 

The equalities of norms stated above should be understood in the follow- 
ing sense: If the operators belong to the corresponding spaces, then their norms 
are equal. 

PRooF. (i) Suppose C E ~  v. Let x~D(A) ,  let y~L°([0 ,  T], Y*) and 
denote 

fo" Zy = Tt*C*y(t)dt, 

so Zy ~. X~*. Then, using the H61der inequality and Definition 6.1, we have 

I (x, zy)l = :o r ICT, x, y(t))dt 

< U CT, x II,:¢t0.T~.~" II Y II 

--< Ill c lib" II x II • II y II. 

This shows that the functional zy can be extended continuously to all of 

X, i.e., zy E X* and II z,  II --< Ill c Ill,' II y II. This implies that C* E ~q and 

III c *  IIIq =< Ill c lib. 
Conversely, suppose C* E ~q. Let x E D(A ). Let S' denote the unit ball of 

Lq([0, T], Y*). Then using (6.5) we have 

II CT, x Ilt'(10,r].r) = sup ~r (CT, x, y(t))dt 
yES' 

(x;: ) -- sup , %*C*y(t)dt 
yES' 

--< III c *  IIio" II x II. 

By looking at Definition 6.1 we conclude that C E ~v and Ill c Ill, -<- Ill c *  IIl¢. 
This finishes the proof of (i). 

(ii) Suppose B E ~  v. Let z~D(A*). Let S denote the unit ball of 
LV([0, T], U). Then using (6.4) we get, after a computation similar to that in 
the second part of the proof of (i), that 
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II B*T*z IIL,¢t0,n,v.~ --< III B II1~" II z II. 

By looking at  Definition 6.1 we conclude that B* ~ ¢ga and ill B* Ill, ~ Ill BIII,. 
Conversely, suppose B * E ~ q .  Let z~D(A*), let v~LP([0, T], U) and 

denote x~ = fo r T t Bv(t)dt, so xvE X_ 1. Then, using the H61der inequality and 
Definition 6.1, we can get (see the first part of the proof  of (i) for the.idea) that 

(6.6) I <x~, z> I ~ III B*  Illq" II z II • II v II. 

If  X is reflexive, then we continue as follows. Inequality (6.6) shows that xv 
can be extended to a continuous functional on X*, whence xvEX and 

II xo II --< Ill B* Ill," II v II. That implies that B E ~p and Ill B Illp --< ]11 B* Ill,. 
I f X  is not assumed to be.reflexive but p < ~ ,  then from (6.6) we proceed as 

follows. For any step function v we have that x~E X and (6.6) implies ]] xv ]] < 

Ill B* Ill," II v II- By Remark 6.7, B is admissible and Ill B Ill~ --< III B* Ill,. 
(iii) In the first part of the proofof( i i )  we did not use that p < oo or that Xis  

reflexive, so we have already proved there the implication B E ~ =* B* E ~ ,  

as well as the inequality Ill B Ill~ --> Ill B* Ill,. It follows that i fB  ~ ~ then (6.6) 
holds, implying III B II1~ ---< III B* II1,, which finishes the proof  of (iii). [] 

REMARK 6.10. I don ' t  know if the converse of the implication in (iii) of 
Theorem 6.9 holds (unless X is reflexive, so (ii) applies). It is not difficult 
to prove the following substitute. For any BE~'(U,X_~), we have that 
B* E ~ ( X * ,  U*, T*) if and only if (6.3) holds for any regulated function 1). A 
function v: [0, T ] - -  U is called regulated if it is a uniform limit of step 
functions, or equivalently, if it has left and right limits in each point of its 
domain (with the obvious modification for endpoints). The proof  is similar to 
the proof  of (ii) above, but we need a strengthening of (6.4) for p = oo: This 
equality remains true if we replace S by its intersection with the space of  
regulated functions. 

REMARK 6.1 I. Using the duality theorem, we can translate various nega- 
tive results appearing in Weiss [18, §5], to get negative results about obser- 
vation operators. We ment ion the following results obtained in this way: 

(a) X* may be a nondense subspace of  cp. Hence, in general ~fp can not be 
obtained as the completion of.~°(X, Y) with respect to HI " Illp. 

(b) The condition (6.2) is not sufficient for C to  be admissible. It follows that 
for X, Y and T fixed, there is generally no Banach space Z C X with the 
property that ~p(X, Y, T ) = ~ ( Z ,  Y). (Indeed, this would imply 
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Z * - -  Cp and, by the uniform boundedness principle, that (6.2) is 
sufficient for admissibility.) 

7. Diagonal semigroups on 12 

In this section we consider X, the state space, to be the Hilbert space l 2, and 
the semigroup T to be diagonal, i.e., 

(7.1) (TtX)k = e~tXk, V k ~ N ,  

where Xk denotes the k-th component  o fx .  The numbers 2k, the eigenvalues of 
the generator A, satisfy 

(7.2) sup Re(2k) = -- tr < 0. 
k E N  

The above restriction is unessential; it is made only for convenience (if it is not 
satisfied, we can shift A until (7.2) gets satisfied). The output  space Ywill be C 
(scalar output). We identify elements c ~ X *  with sequences (Ck) such that 

(X, C) = ~'~-1 Xkek for any x ~ X t .  
First we characterize the admissible observation operators for the above X, 

Y, T and p = 2. This characterization, a Carleson measure criterion, follows by 
duality from the corresponding criterion for control operators, which is due to 
Ho and Russell [7] and Weiss [19]. 

For h > 0 and to E R we denote 

R(h, to)= { z ~ C [ 0  < R e ( z ) < h ,  I I m ( z ) -  col < h } .  

R(h, to) is a rectangle in the right complex half-plane, touching the imaginary 
axis. 

We say that a complex sequence (Ck) satisfies the Carleson measure criterion 
for the sequence (2k), if for any h > 0 and any 09 E R  

(7.3) Y~ I Ck 12 < M .  h, 
- ).t•R (h,og) 

where M > 0 is independent  of h and to. 

PROPOSITION 7.1. For T given by (7.1) and satisfying (7.2), o2 (as intro- 
duced in Definition 6.1) is the space of  sequences satisfying the Carleson 
measure criterion (7.3). 

PROOF. By the duality theorem 6.9, c ~ X *  belongs to e2 if and only if c* 
belongs to 82  (with respect to T*). T* is given by (7.1), but with irk instead OfZk. 
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According to the result in Weiss [ 19], c* E 82  if and only if c* is a sequence 

satisfying the Carleson measure criterion for the sequence (2k) (which is the 

same as for (2k)). Hence c ~ o2 if and only if it is a sequence satisfying (7.3). [] 

The following proposition is helpful for evaluating CLX when T is a self- 

adjoint diagonal semigroup on X = 12 and c ~X* .  

PROPOSITION 7.2. L e t  T be given by (7.1) on X = 12 a n d  a s s u m e  

(7.4) 

L e t  x ~ X a n d  c ~ X * .  I f  

(7.5) 

then x ~ D ( c t . )  a n d  ct.x = S .  

0 > , ~  1 > _ ~ , ~ 2 = 2 3 =  • • . .  

~, CkX k = S ,  
k - I  

Note that we didn't assume the series in (7.5) to be absolutely convergent, so 

the sum S could depend on the order of  the terms. This ambiguity is eliminated 

by the ordering requirement (7.4). 

PROOF. If the sequence (/~k) is bounded then A ~A"(X), so X,  = D(CL) = X 

and the proof is finished. Assume 12k I ~ o0. According to (4.2) we have to 

check that 

(7.6) 

We have 

(7.7) 

lim c - - A - l x = S .  
~ 0  T 

T~ - I ,~, e a** -- 1 
c A - ' x =  2, Ck Xk 

"t" k=l ,~k T 

(the series above is absolutely convergent, because A - Ix ~ XI and c E X*). Let 

us denote for any k ~ N and any r > 0 

e ~ -- 1 e ~÷,~ -- I k 
, 0 k ( r )  = - -  , Sk = Y. CjXj. 

2kr 2k+lr j ff i l  

Then (7.4) implies Pk(r) ~ 0 and IAk] --" oo implies 

(7.8) lim ~ P k ( r ) = l ,  V n E N .  
1=~0 k-n  

Summation by parts in (7.7) gives (using (7.5) and the fact that I Akl '-" ~ )  
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T~ - I 
C - - h - I x  = ~ Pk('C)Sk. 

"C k=l 

Let e > 0. Choose n E N such that for k > n,  I Sk -- S I ~ e. We rewrite the last 
equality: 

TT - -  I . - 1  
- -  A - l x -  S = Y, 

"C k- I  
pk('[)Sk + Pk(r)(Sk -- S )  + S pk('C) - 1 . 

k=n k n 

Using (7.8) and the facts that Pk(T) ~ 0 and lim,_0 Pk(Z) = 0, we can show that 
for z sufficiently small, the right-hand side of  the above equality is smaller, in 

absolute value, than 3e. This proves (7.6). [] 

REMARK 7.3. Consider the triple (A, B, C) introduced in Remark 4.9. Its 

transfer function H can be written in the form 

H(s) = C L  ( s o l  - -  A ) - ~B + C ( s o  - s ) ( s I  - A ) - l ( s  d - A ) -- ~B, 

where s o ~ p ( A )  is fixed. This shows that, avoiding computations involving 
CL, we can compute H up to an additive constant. However, if we want to 
compute this additive constant then we have to evaluate the expression 

CL(Sol --  A )  - ~B. The previous proposition is a tool for such evaluations, for a 

very special kind of  A and C. See also the examples in [21]. 

ACKNOWLEDGEMENTS 

The author is grateful to his thesis supervisor, Professor Zvi Artstein, for his 
valuable advice, and to Professor Ruth Curtain for stimulating discussions. 

REFERENCES 

1. R. F. Curtain, On semigroup formulations of  unbounded observations and controi action for 
distributed systems, in Proc. of the M.T.N.S. Symposium, Beer Sheva, Israel, 1983, Springer- 
Verlag, Berlin, 1984. 

2. R.F. Curtain and A. J. Pritchard, Infinite dimensionallinear systems theory, Lecture Notes 
in Information Sciences, Vol. 8, Springer-Verlag, Berlin, 1978. 

3. J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc. Surveys, Vol. 15, Providence, 
RI, 1977. 

4. S. Dolecki and D. L. Russell, A general theory ofobser~tion and control, SIAM J. Control 
Optim. 15 (1977), 185-220. 

5. H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, Orlando, 1972. 
6. P.A. Fuhrmann, Linear Systems and Operators in Hilbert Space, McGraw-Hill, New York, 

1981. 
7. L. F. Ho and D. L. Russell, Admissible input elements for systems in Hilbert space and a 

Carleson measure criterion, SIAM J. Control Optim. 21 (1983), 614-640. 



Vol. 65, 1989 OBSERVATION OPERATORS 43 

8. I. Lasiecka and R. Triggiani, Stabilization of Neumann boundary feedback of parabolic 
equations: The case of trace in the feedback loop, Appl. Math. Optim. 10 (1983), 307-350. 

9. R. Nagel (ed.), One-parameter semigroups of positive operators, Lecture Notes in Math, 
Vol. 1184, Springer-Verlag, Berlin, 1986. 

10. A. Pazy, Semigroups of Linear Operators and Applications to P.D.E.'s, Appl. Math. 
Sciences, Vol. 44, Springer-Verlag, New York, 1983. 

11. A. J. Pritchard and D. Salamon, The linear quadratic control problem for infinite 
dimensional systems with unbounded input and output operators, SIAM J. Control Optim. 25 
(1987), 121-144. 

12. A. J. Pritchard and S. Townley, A stability radius for infinite dimensional systems, in 
Proceedings, Vorau, Austria, 1986, Lecture Notes in Control and Information Sciences, Vol. 102, 
Springer-Verlag, Berlin, 1987. 

13. A. J. Pritchard and A. Wirth, Unbounded control and obsermtion systems and their 
duality, SIAM J. Control Optim. 16 (1978), 535-545. 

14. D. Salamon, Control and Observation of Neutral Systems, Research Notes in Mathe- 
matics, Voi. 91, Pitman, London, 1984. 

15. D. Salamon, Realization Theory in Hilbert Space, University of Wisconsin m Madison, 
Technical Summary Report 2835, 1985, revised version submitted in 1988. 

16. D. Salamon, Infinite dimensional systems with unbounded control and observation: A 
functional analytic approach, Trans. Am. Math. Soc. 300 (1987), 383-431. 

17. T. Seidman, Observation and prediction for one-dimensional diffusion equations, J. Math. 
Anal. Appl. 51 (1975), 165-175. 

18. G. Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim. 27 
(1989). 

19. G. Weiss, Admissibility of input elements for diagonal semigroups on 12, Systems & 
Control Letters 10 (1988), 79-82. 

20. Y. Yamamoto, Realization theory of infinite-dimensional linear systems, Part I, Math. 
Syst. Theory 15 (1981), 55-77. 

21. R. F. Curtain and G. Weiss, Well posedness of triples of operators (in the sense of linear 
systems theory), Proceedings of the Conference on Distributed Parameter Systems, Vorau, 
Austria, July 1988, to appear. 

22. G. Weiss, The representation of regular linear systems on Hilbert spaces, Proceedings of 
the Conference on Distributed Parameter Systems, Vorau, Austria, July 1988, to appear. 


